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The problem of the cancellation of mass-loading e!ects of transducers in experimental
structural dynamic analysis is addressed. A generalized solution based upon dynamic
coupling and uncoupling of substructures is presented. It is shown that it is possible to solve
the problem, no matter where the extra loading masses are located, by means of a series of
relatively straightforward calculations. It is also shown that one can obtain frequency
response functions (FRFs) without having to undertake the corresponding measurements.
Up to now, the problem of obtaining the dynamic properties of all the structure FRF curves
has only been considered possible provided the complete FRF matrix has been measured.
The purpose of this paper is to contribute to solving this problem. In fact, the technique
developed for cancellation of mass-loading e!ects is shown to also allow for the evaluation
of the complete FRF matrix. A simple numerical example is presented to illustrate the good
theoretical performance of the method. The same example is extended to incorporate noise,
simulating an experimental situation, and it is shown that the technique is highly sensitive to
measurement inaccuracies and that further work is necessary in order to solve this di$culty.
A possible solution to improve the results is presented and discussed.
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1. INTRODUCTION

Assuming a system with N degrees of freedom, hysteretically damped, it is easy to show
[1, 2] that is dynamic characteristics may be described by an N]N receptance matrix of
frequency response functions a

jk
(u) relating the response at a given co-ordinate j to an

excitation force applied at a given co-ordinate k. Each element a
jk

(u) of the receptance
matrix can be expressed by
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where i"J!1, /
jr

and /
kr

are elements j and k of the mass-normalized mode shape
vector of mode r, u is the current excitation frequency and u

r
and g

r
are the rth mode

natural frequency and hysteretic damping factor respectively. Equation (1) is frequently
written in the form
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where
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is a complex quantity known as the modal constant, for which
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are constants for a given r, j and k. Two important conclusions can be extracted from the
above equations. First, it is clear that the receptance matrix is symmetric and therefore
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this property being known as the principle of reciprocity and second, the modal constants
are interrelated, obeying a relationship that is described by the pair of equations
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known as the modal constants consistency equations. What equations (5) and (6) mean is
that if a full row (or column) of the receptance matrix [a(u)], is known, then the whole
matrix can be evaluated. Unfortunately, in practical situations, only an incomplete number
of modes can be included in the analysis, the frequency range of the experimental analysis
being limited. The response model will therefore be truncated and contain errors due to
omission of all the out-of-range modes. One way of minimizing the consequences of using
such a model is to introduce corrections on the FRFs so that they approximate the
measured data in the frequency range of interest, by including an extra term in the response
equation, i.e.,
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where RM
jk

(u) is a complex residual term accounting for the contribution of the out-of-range
modes and N

inc
(N is the incomplete number of modes included in the analysis. This

residual term does not obey any consistency relationships such as the ones described by
equations (6) and therefore, estimating unmeasured FRFs from the measured ones (one row
or one column of the FRF matrix) is not accurate unless values for the relevant residual
terms can be estimated. In the past, some e!ort has been made [3] to relate the residual
e!ects of out-of-range modes between measured and unmeasured FRFs, but without much
success in the sense of drawing general conclusions.

Moreover, measurement of the dynamic response of a structure, in terms of frequency
response functions (FRFs), often involves the use of accelerometers and force transducers
and therefore one measures directly the accelerance H (u) instead of the receptance a(u).
This poses no problem as accelerance and receptance are just two di!erent forms of
presenting the same FRF, and can be simply related by

H(u)"!u2a (u). (8)

However, the use of transducers such as the accelerometers and force gauges, imply changes
in the measured FRFs due to the loading of the structure with extraneous (though
sometimes negligible) masses. Figure 1(a) illustrates a typical FRF measurement set-up
where the measurement of a direct FRF on a free}free beam is to be performed. One can



Figure 1. (a) Schematic representation of the test set-up for measuring a direct FRF on a free}free beam;
(b) beam and transducers, the shadowed zone representing the total extra mass m, contributing to the measured
force signal.
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observe the shaker and the transducers (force gauge and accelerometer) capturing the force
excitation and the acceleration response signals. The e!ective accelerance FRF of the beam
at that point is to be determined; i.e., the relation

H"

xK

f
(9)

for the entire experimental frequency range, where xK is the beam acceleration response and
f is the force e!ectively applied to the beam at that point, as if there were no interference
caused by the addition of transducers to the system under consideration. However, the use
of an experimental set-up such as the one shown in Figure 1(a) allows only for the
measurement of an accelerance FRF (H

meas
) of the system which includes both the beam and

the additional mass of the transducers (obviously, it is assumed that the transducers behave
as rigid bodies within the frequency range of interest). It is easy to see that, in this case, to
obtain an acceleration response signal xK , which is the actual acceleration of the beam, the
input force excitation is not the true force one requires for the calculation of H, as in
equation (9). This is due to the fact that part of the force supplied by the shaker is spent on
accelerating part of the force transducer mass and also the accelerometer mass, as shown in
Figure 1(b). Only about half of the force transducer mass contributes to the force signal,
because the terminal is nearly at half the thickness of the transducer (note that this is only
true for the direction that is considered. For directions perpendicular to the one under
consideration all the force transducer mass has to be taken into account). The shadowed
zone in Figure 1(b) represents the total extra driven mass, m.

As the objective is to obtain the e!ective force f applied to the beam, one must
subtract from the measured force f

meas
the inertia force corresponding to the total extra mass

m, i.e.,

f"f
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Dividing equation (10) by xK , it follows that
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where H
meas

is the measured accelerance FRF. From equation (12), one obtains the desired
accelerance FRF:

H"

H
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)
. (13)

This process is known as mass cancellation [1, 2]. In general terms, it is important to
proceed in this way whenever the extra masses are signi"cant with respect to the structure
mass itself, although this should be preferably regarded from the point of view of the modal
masses associated with the structure. In fact, in a given frequency range, the structure
exhibits a number of resonances for each of which there is an associated modal mass. If the
mass of the transducers is signi"cant by comparison with a particular modal mass, then
the measured resonant frequency will be lower than its true value. On the other hand,
if the extra mass is close to a node, no important e!ect is expected (provided no rotational
inertia is being accounted for).

In general, some of the resonances will always be a!ected somewhat by the masses of the
transducers, so a mass cancellation procedure is usually desirable, especially if the
accelerometer position is to be moved around the structure, which is often the case. As
shown above, the mass cancellation procedure is quite straightforward when one is dealing
with direct point FRFs; one must simply apply expression (13). However, if one wishes to
undertake mass cancellation in transfer FRFs, there was not, until very recently, any speci"c
technique available. In fact, McConnell [4] presented a partial solution, where the mass
added at the excitation point could be cancelled, but not the mass added at the response
location. The authors addressed this problem a few years ago [5, 6] and proposed a possible
solution that was further developed and discussed 1 year later by Ashory [7]. The initial
purpose of this paper is to show that the generalization of the mass cancellation principle to
any transfer FRF is indeed (at least, theoretically) possible. On the other hand, as will be
shown, the process of evaluating the whole FRF matrix from measurements taken on
a single column (or row) is shown to be a consequence of the solution of the mass
cancellation problem.

It is worth mentioning now that, in any real case (which is a 3-D problem), an added mass
at a given point of the structure will obviously introduce changes due to translational and
rotational inertias in all six possible directions of motion of its centre of gravity. A point
mass modi"cation that is e!ective in a single degree of freedom is only achieved by use of
very special attachment methods that are not normally employed for "xing response
transducers. The complete problem is therefore much more di$cult to solve. In this paper, it
is assumed that the added mass e!ect considered to be important is only related to the
translation response in the direction of the transducer sensitivity axis, all the other being
assumed negligible.

A similar reasoning may be applied to the force transducer as, in fact, it will also add mass
(and rotational inertia) to the structure in more than a single degree of freedom. In this case,
however, there is a subtle di!erence in the e!ective point masses added for a force
transducer that does not occur with an accelerometer. It is true that the e!ective mass of
a force transducer that is added to a structure in the direction of the excitation force is
given by the base-side mass that is usually between one-third and one-half of the mass of
the transducer. However, in directions perpendicular to the excitation direction, the
full mass of the force transducer is added to the structure. Again, for the purpose of
this paper, it is assumed that the added mass e!ect considered to be important is only
related to the excitation direction of the transducer, all the others being assumed to be
negligible.
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The procedure is summarized in this paper, recalling the various necessary steps already
presented in previous work [5, 6]. It is shown, using a very simple system, that the method
works perfectly well when an exact numerical example is used. However, it is also shown
that the method is highly vulnerable to inaccuracies in the FRF data, using the same
numerical example polluted by random noise (to simulate an experimental situation). The
reasons for this error sensitivity are addressed and discussed. It is shown that results can be
dramatically improved if an auxiliary sti! spring (or large mass) is used during the
experimental procedure and cancelled out by post-processing the data. Though the
proposed solution may not be easy to implement in some situations, it performs well and
opens a way for further studies that may lead to better solutions.

2. THEORETICAL DEVELOPMENT OF THE MASS UNCOUPLING METHOD (MUM)

2.1. BASIC EQUATIONS

Consider two substructures, A and B, that are rigidly connected through some
co-ordinates at known common points, as shown schematically in Figure 2, together
constituting structure C.

Continuing, let i represent the co-ordinates of interest for the analysis at points
exclusively belonging to substructure A, k those exclusively belonging to substructure B and
j the connection ones, i.e., those that are common to A and B, as schematically shown in
Figure 2(b). Let also: [H(A)

ii
] represent the matrix of accelerance FRFs amongst co-ordinates

i; [H(A)
ij

] represent the matrix of accelerance FRFs between co-ordinates i and j ; [H(A)
jj

]
represent the matrix of accelerance FRFs amongst co-ordinates j belonging to substructure
A; [H(B)

kk
] represent the matrix of accelerance FRFs amongst co-ordinates k; and [H(B)

kj
]

represent the matrix of accelerance FRFs between co-ordinates k and j.
Therefore, matrices [H(A)] and [H(B)] of the accelerance FRFs for each of the

substructures A and B, will be given by the following expressions:
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The FRF matrix for the whole structure, [H(C)], will be
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Figure 2. (a) Structure C, composed by two substructures A and B, connected together; (b) Notation for the sets
of co-ordinates used.



766 J. M. M. SILVA E¹ A¸.
Applying the appropriate equations of equilibrium and compatibility at the common points
(and therefore at the common co-ordinates) that constitute the joining locations, the
coupling of both substructures will result in a complete system C with an accelerance matrix
given by the following equation [1, 2]:
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However, this formulation requires three matrix inversions, thus becoming computationally
&heavy'' and often leading to poor conditioning problems. A simple way to improve the
performance of the previous calculations is to perform some mathematical manipulations in
equation (16), as shown by Skingle [8], and arrive at
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It is clear that this procedure not only involves a single matrix inversion (avoiding most of
the usual numerical problems) but also the only inversion that is needed is of the order
of the number of connecting co-ordinates j. For the purposes of this paper, an alternative
form for equation (17) is proposed [5] and shall be used. Explicitly writing [H(C)], it follows
that
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As it will be seen later, the latter formulation allows for a clearer visualization of the
coupling and uncoupling procedure and of the interrelationship between the substructures
FRFs. Either of expressions (17) and (18) allows for the calculation of the FRF system
matrix of structure C, demanding a single inversion where the matrix to invert is of the
order of the number of co-ordinates common to A and B. Therefore, one should expect that
numerical problems and computational e!ort will have a far smaller signi"cance than in the
traditional way.

2.2. MEASUREMENT TECHNIQUE

The best way to explain how the proposed technique works is to use an example where
a sequential procedure is applied. Hence, consider a structure X (Figure 3) with
N co-ordinates of interest (hence, with N d.o.f.s for the purpose of the analysis). Suppose the
intention is to characterize its dynamic behaviour, relating the N co-ordinates of interest



Figure 3. Schematic representation of the structure X to be studied, with N d.o.f.s.

Figure 4. First measurement.
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located, respectively, at points 1, 2,2, N, by measuring the corresponding FRFs.
The structure will be excited with a shaker at a single co-ordinate, say no. 1, and the
force and acceleration signals will be measured through a conventional force trans-
ducer and accelerometers. The measurements to be taken in order to cancel all the
transducers added masses and obtain, at a later stage, the whole FRF matrix (N]N) are the
following (note that this sequential procedure is not mandatory; any alternative sequence
can be used although the one presented allows for the implementation of a simple recursive
algorithm):

1. Measure the direct FRF at co-ordinate 1 (Figure 4), where m
1

represent the added
masses of the force transducer and of the accelerometer.

2. Add an accelerometer at co-ordinate 2 (mass m
2
) and again measure the direct FRF at

1 and the transfer FRF relating 1 and 2 (Figure 5).
3. Add another accelerometer at co-ordinate 3 (mass m

3
) and again measure the direct

FRF at 1 and the transfer FRFs relating 1}3 (Figure 6).
4. Proceed as previously, adding an accelerometer at each new co-ordinate and

performing the corresponding sets of measurements, ending with the last one (m
N
)

which is exempli"ed in Figure 7.

These are the complete sets of necessary measurements. It should be stressed that the shaker
is always at co-ordinate 1 and that (N2#N)/2 measurements have been taken altogether.
In fact, this number makes sense, as (N2#N)/2 unknown FRFs (the FRF matrix is N]N
and symmetric) are being sought. If the number of d.o.f.s is too large and there are
insu$cient accelerometers, dummy masses may be used to replace them at positions tested
already. In fact, dummy masses may always be used if there is a need to increase the



Figure 5. Second set of measurements.

Figure 6. Third set of measurements.

Figure 7. Nth set of measurements.
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perturbation e!ect of the extra masses (which might be advantageous for the particular case
of this technique).

The following procedure is proposed, which is, in fact, very simple; for each situation
corresponding to a set of measurements, the respective added masses will be uncoupled, in
decreasing order. Starting with the "rst set of measurements, "rst uncouple mass 1, then for
the second set uncouple mass 2 "rst and then mass 1, for the third set uncouple mass 3, then
mass 2 and them mass 1, and so on. Note again that this sequential procedure is presented
for the sake of clarity. It is always possible to use other sequences provided all extra masses
are taken into account and all the needed FRFs are measured.
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2.2.1. First situation2uncoupling of m
1

The structure represented in Figure 4 can be seen as the result of coupling X to m
1

and
therefore, according to the substructure notation used in section 2.1 previously, it may be
stated that

A,X, B,m
1
, C,X=m

1
,

where = means &&coupled to''. As N co-ordinates are being considered, the FRF matrix
[H(A)] will be of order N and [H(B)] of order 1, as it represents a simple mass modi"cation.
The co-ordinates at points 2, 3,2, N correspond now to co-ordinates i, the co-ordinate at
point 1 corresponds to co-ordinate j and, in this case, there is no co-ordinate k. The notation
can be simpli"ed further, replacing xH(A)y by [H] (which is what is required) and xH(C)y by
[H (1)] , where the superscript (1) denotes the fact that there is now an additional mass (m

1
) at

co-ordinate 1. Noting that H(B)
11

"1/m
1

is the only element in the FRF matrix xH(B)y which
is of order 1, equation (18) is then reduced to
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So far, H(1)
11

is the only measurement performed and hence, the only available FRF.
Therefore, solving equation (19) for the known FRF H(1)

11

H(1)
11

"

H
11

(1#m
1
H

11
)
NH

11
"

H(1)
11

(1!m
1
H(1)

11
)
, (20)

which is simply equation (13). So far nothing is new. In fact, equation (20) is well known and
has been around for many years [2]. However, one also wishes to obtain the remaining
FRFs (H

12
, H

13
,2, H

1N
, H

22
, H

23
,2,H

2N
, H

33
, H

34
,2, H

3N
,2, H

NN
) without the

e!ects of any added transducers masses and this corresponds to something considered
impossible in the past.

2.2.2. Second situation2uncoupling of m
1

and m
2

The situation is that illustrated in Figure 5. One must remove the e!ects of m
1

and m
2
.

Initially, m
2

is uncoupled; i.e., substructure A is now the set constituted by the original
structure X and the extra transducers mass at co-ordinate 1. Co-ordinates i are therefore 1,
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3 and 4 and j is 2. Equation (19) now becomes

H(1, 2)
11 H (1,2)

13
2 H (1,2)

1N
H (1,2)

31
H (1,2)

33
2 H (1,2)

3N
F F F

H (1,2)
N1

H (1,2)
N3

2 H (1,2)
NN

MH(1, 2)
21 H (1,2)

23
2 H (1,2)

2N
N

G
H(1, 2)

12

H (1,2)
32
F

H (1,2)
N2

H (1,2)
22

H "

H(1)
11 H (1)

13
2 H (1)

1N
H (1)

31
H (1)

33
2 H (1)

3N
F F F

H (1)
N1

H (1)
N3

2 H (1)
NN

M0 0 2 0N

G
H (1)

12
H (1)

32
F

H (1)
N2
0

H
#

m
2

(1#m
2
H(1)

22
) GG

!H(1)
12

!H(1)
32

F

!H(1)
N2

1/m
2

HH MMH(1)
21

H(1)
23

2H(1)
2N

NH(1)
22

N. (21)

In this case, H(1, 2)
11 , H(1, 2)

12 , ("H(1, 2)
21 ) and H(1)

11, are known from measurements (note again that
the superscripts represent, within brackets, the co-ordinates where there are added masses).
So,
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These are intermediate FRFs that will be needed in the following steps. Now, m
1

must be
uncoupled. This situation has already been treated. It corresponds to expression (19), taking
into account that H(1)

12
and H(1)
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are already known from equation (23). Thus,
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It is not only obvious that the transfer FRF H
12

was obtained by cancelling the e!ect of
both added masses m

1
and m

2
but also that the direct FRF H

22
could be obtained without

having to measure it.

2.2.3. ¹hird situation2uncoupling of m
1
, m

2
and m

3

The situation is now that illustrated in Figure 6. One must remove the e!ects of m
3
, m

2
and m

1
following a sequential procedure similar to the one just described. Uncoupling m

3
,

co-ordinates i are 1, 2, 4,2, N and j is 3. Rewriting, conveniently, (18) and solving in
a manner similar to the previous ones
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,

where all the FRFs on the right-hand side have been measured or are known from the
previous calculations. For the uncoupling of m

2
, the second situation is repeated, described

by expression (21), now having knowledge of the FRFs in equations (27).
Thus,

H(1)
13

"H(1,2)
13

#m
2
H(1)

12
H(1,2)

23
,

H(1)
23

"(1#m
2
H(1)

22
)H(1,2)

23
, (28)

H(1)
33

"H(1,2)
33

#m
2
H(1)

23
H(1,2)

23
.

At this stage, the next step to be performed is the cancellation of mass m
1
, which is nothing

but the "rst situation again. The "nal results are given by

H
13
"(1#m

1
H

11
)H(1)

13
,

H
23
"H (1)

23
#m

1
H

12
H(1)

13
, (29)

H
33
"H(1)

33
#m

1
H

13
H(1)

13
.

Again, it is obvious that the mass cancellation procedure yielded the unmeasured FRFs H
23

and H
33

. Proceeding until the problem for all the other sets of measurements is solved, is
just a matter of implementing the appropriate calculations.

It has, therefore, been shown that it is possible not only to cancel all the added transducer
masses but also to determine the whole FRF matrix from measurements based on a single
column (or a single row). The example presented seems to be clear enough to understand the
proposed procedure. Observation of the intermediate as well as the "nal expressions reveals
their recursive nature and their similarity, making the whole procedure simple to generalize
to any number N of d.o.f.s and to write it in a systematic way. Consequently, the procedure
is easy to program as a small computer subroutine, as has been shown in reference [5]
where its simplicity is stressed.
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3. EXAMPLE OF APPLICATION

In order to analyze the performance of the proposed technique, a very simple numerical
example will be used: a 2-d.o.f. system, with hysteretic damping, as shown in Figure 8. The
masses simulating the transducers (m

1
and m

2
) were assumed as 2 kg each. The purpose of

using such &&heavy'' transducers is to guarantee that the FRFs corresponding to the example
will show clearly (in the graphical display) the in#uence of the transducers' masses on the
&&experimental'' results.

First, a data set of all the FRF receptance curves was obtained for the original system
(without extra masses m

1
and m

2
). These curves constitute the target the exact FRFs and are

used only for comparison purposes. The second step was to derive the data set of
&&measured'' receptance FRFs (a(1)

11
, a(1,2)

11
and a(1,2)

12
). The mass cancellation procedure was

then applied to this set of &&measurements'' and the "nal results were compared with the set
of target curves originally derived. Figures 9}11 summarize the procedures presenting the
FRF curves superimposed to that the performance of the method can be observed. It is clear
that the mass cancellation procedure allowed for a perfect recovery of the a

11
and a

12
receptances as well as the derivation of the unmeasured receptance curve a

22
. Repeating the
Figure 9. &&Measured'' and derived point receptance a
11

, compared with the exact curve: **, exact; s,
&&measured'', d, derived.

Figure 8. Two d.o.f.s numerical example.



Figure 10. &&Measured'' and derived transfer receptance a
12

, compared with the exact curve: **, exact; s,
&&measured'', d, derived.

Figure 11. Derived point receptance a
22

, compared with the exact curve: **, exact; d, derived.
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procedure with di!erent values of the additional &&transducers''masses showed no deviation
of the expected results (even with m

1
and/or m

2
as low as 0)2 g).

Despite this extremely good performance, it cannot be forgotten that the method can
only be of interest if its application to real data also performs well. It was therefore decided
to repeat the previous performance check using the same data and polluting them with
random errors. The use of polluted data are meant to simulate real experimental results.
Figures 12}14 show the results after applying a $10% random error to the real and
imaginary parts of the receptance data.

It is obvious, from Figure 12, that the cancellation of m
1

yields good results. This was
known from past experience, as cancellation of the transducer mass for a point FRF is
common knowledge [2]. However, it is immediately apparent that the cancellation
procedure is extremely sensitive to errors when the other FRFs are taken into account. In
the case of Figure 13, it can be seen that only the region between the two resonance
frequencies is acceptable. In the case of Figure 14, the whole FRF tends to be unacceptable.

The previous results are very disappointing as both the cancellation exercise and the
objective of deriving a point FRF that had not been measured previously (the ultimate goal



Figure 12. &&Measured'' and derived point receptance a
11

, compared with the exact curve (data polluted with
$10% random error): **, exact; *s*, &&measured'', *d*, derived.

Figure 13. &&Measured'' and derived point receptance a
12

, compared with the exact curve (data polluted with
$10% random error): **, exact; *s*, &&measured'', *d*, derived.

Figure 14. Derived point receptance a
22

, compared with the exact curve (data polluted with $10% random
error): **, exact; *d*, derived.
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of the method), shows such a dependency on measurement errors that its use with real data
cannot be envisaged unless this problem can be solved.

The "rst idea was to apply identi"cation procedures to all the measured curves
identifying modal parameters from the polluted FRFs and regenerating the data would
yield smooth curves and, hopefully, better results. Figures 15}17 show what has been
achieved. As expected a

11
yields no problems. However, results get worse when the other

two curves are taken into consideration.
It is important to stress here that it is also possible to try to improve the previously

derived curves by means of identi"cation procedures. However, in the particular case of a
22

,
it could be seen that improvements could be obtained because the exact curve was known
beforehand. In a real situation, this would not be possible and therefore, this type of exercise
would not be meaningful.

Thus, despite the fact that it is possible to improve the results using identi"cation
procedures, two problems cannot be avoided: (i) the accuracy of the identi"cation procedure
is now of great importance; and (ii) in real cases there is no prior knowledge of curves such
Figure 16. &&Measured'' and derived transfer receptance a
12

, compared with the exact curve (original data were
polluted with $10% random error and subsequently identi"ed):**, exact;*s*, &&measured'',*d*, derived.

Figure 15. &&Measured'' and derived point receptance a
11

, compared with the exact curve (original data were
polluted with $10% random error and subsequently identi"ed):**, exact;*s*, &&measured'',*d*, derived.



Figure 17. Derived point receptance a
22

, compared with the exact curve (original data were polluted with
$10% random error and subsequently identi"ed). **, exact; *d*, derived.

Figure 18. &&Measured'' receptance a(1,2)
12

and derived receptance a(1)
12

, compared with the exact curve (data
polluted with $10% random error): **, exact a

12
; *s* &&measured'' a(1,2)

12
, *d*, derived a(1)

12
.
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as a
22

and therefore the performance of the method cannot be evaluated. Moreover, it must
be kept in mind that replacing the originally measured curves by smoother FRFs based on
equation (7) with the identi"ed modal characteristics, reintroduces the problem of the
inconsistency of the residual terms; this is precisely what it was intended to avoid.

Re-analyzing the proposed mass-cancellation method, it becomes obvious that the errors
shown in Figures 13 and 14 are the consequence of an error growth contained in the
procedure. This is apparent if the intermediate calculations are examined. Equations such
as equation (23) contain, in the numerator, a di!erence between two quantities that are
similar in value and already a!ected by errors. As a consequence, the di!erence may be of
the same order or smaller than the data errors. In fact, plotting the curve a(1)

12
(also an FRF

that was never measured) shows that this intermediate calculation step yields already
unacceptable results (Figure 18). Figure 19 shows the reason for this: above and below the
two resonances the two polluted curves are almost identical and therefore the derivation of
a(1)
12

will yield poor results in these regions. As a consequence, the subsequent procedure
steps will obviously yield unacceptable results as well, and the method fails in its objectives.



Figure 19. Comparison of the two FRFs whose di!erence is needed in order to calculate a(1)
12

: *s*, derived
a(1)
11

, *d*, &&measured'' a(1,2)
11

.

Figure 20. Derivation of a
12

using a sti! spring to modify a(1,2)
12

(data polluted with $10% random error):**,
exact; #, &&measured'' a(1,2)

12
; *s*, derived a(1)

12
; *d*, derived a

12
.
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On the other hand, in the intermediate region, this type of situation does not occur and
results tend to be more reasonable.

Having found the reasons for the errors, a possible solution was immediately apparent: it
is imperative that the intermediate calculations, where di!erences of FRFs are taken, do not
yield poor results. One way of solving this problem is to modify one of the curves in order to
obtain di!erences that are larger than the errors.

From examination of equations (23) it can be concluded that introducing a modi"cation
at co-ordinate 1 will a!ect both curves in a similar manner whereas introducing
a modi"cation at co-ordinate 2 will only modify one of the curves. Following this reasoning
it was decided to modify a(1,2)

11
arti"cially by incorporating in the test set-up a sti! spring

connecting co-ordinate 2 to ground. The e!ect of this sti! spring was subsequently cancelled
out using the same cancellation procedure as used for the mass. Figures 20 and 21 show the
results that were obtained.

There is now a dramatic improvement of the FRFs when compared with what was
obtained previously. As these are the "nal curves, it is always possible to smooth them by



Figure 21. Derivation of a
22

using a sti! spring to modify a(1,2)
12

:**, exact;*d*, &&measured'',*s*, derived
a(1)
22

.
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means of identi"cation procedures. If, instead of a sti! spring, a very large mass was used
(increasing m

2
, for example), the results would be very similar.

It seems therefore that the problem was solved given the fact that the results are now
reasonable. However, one must bear in mind the feasibility of this solution in practice. The
improvement was due to connecting co-ordinate 2 to ground (or to a large mass) by using
a sti! spring. Looking at equations (19) and (21), it is obvious that if the modi"cation was to
be done by coupling a spring to co-ordinate 1, this could be performed numerically because
a(1)
11

is a known curve. As, in a real situation, the starting point would be having no
knowledge of a(1,2)

22
, this connection cannot be performed numerically. This means that

measurements of a(1,2)
11

and a(1,2)
12

must actually take place with a real sti! spring connecting
co-ordinate 2 to ground in the experimental set-up. Alternatively, a similar result could be
obtained using a large mass attached to co-ordinate 2. However, incorporating a large mass
would be extremely di$cult (if not impossible). So, in most cases, to incorporate the spring
or a sti! stinger will be more feasible.

It must be noted that this discussion has been centered on a 2-d.o.f. example. As shown at
the beginning of the paper, the number of intermediate calculations may grow rapidly with
the number of d.o.f.s. For systems larger than the 2-d.o.f. system presented one can expect
the problem to be more poorly conditioned. Extending the proposed solution to a larger
number of d.o.f.s will nevertheless be possible.

Finally, it must be stressed that the proposed test schedule (or any other alternative
sequence leading to the same "nal objective) tends to be time consuming and therefore,
there is always a high probability of change to the underlying (base) structure (suspension,
alignment of shaker, etc.) that would add systematic errors to the measured FRFs as well as
the random errors noted. Application of this technique to a real structure must therefore be
done with very special care in the experimental procedures.

4. CONCLUSIONS

It was shown that, contrary to common belief, it is possible, theoretically, to cancel the
added transducer masses in transfer measurements. A procedure was proposed that ful"lls
this objective. In addition, unmeasured FRFs could be derived, showing that knowledge of
a single column (or row) of the FRF matrix is su$cient to derive the complete matrix even
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when incomplete models are used. However, the proposed method showed extreme
sensitivity to errors in the original data. In principle, this would preclude its use in real cases.
A possible solution to this problem has been proposed and some results have been
presented, showing its good performance by dramatically improving the "nal results. The
proposed solution implies the use of a sti! spring in order to further modify some of the
measured FRFs.
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